'The First Day of Summer': Parsing Temporal Expressions with Distributed Semantics

Ben Blamey, Tom Crick, Giles Oatley Cardiff Metropolitan University

Outline

- What are temporal expressions?
- How do we represent temporal expressions?
 - Existing Approach (Discrete Interval)
 - Issues
 - Proposed Approach Distributed Definition
- Mining the Definitions
 - Collect Data
 - Gaussian Mixture Models & Expectation-Maximization
- Parsing adaption of StanfordNLP / SUTime.
- Examples / Online Demonstration
- Application when was my photo uploaded?

What are Temporal Expressions?

"<u>Next Tuesday</u> is my <u>Halloween</u> Party"

"Can't wait for Bonfire Night"

"Today is Chinese New Year"

"I'm moving house at the <u>start of January</u>" FRESHERS WEEK!!!

"<u>Last Summer</u> I really enjoyed the <u>London Olympic Games</u>"

3/4/2014

2013-08-09 12:45 UTC+5

"On my way to AI-2013"

call for papers | <u>paper submission and info for authors</u> | accepted papers internet access for delegates

sgai-conference@bcs.org.u

How do we Represent Temporal Expressions?

"Can't wait for my Halloween party"

Discrete Interval (Traditional Approach)

How do we Represent Temporal Expressions?

"Can't wait for my Halloween party"

Discrete Interval (Traditional Approach)

Key Idea

We can combine lots of definitions to build a statistical distribution of these definitions. ...and use this the distribution as a new definition.

How do we Represent Temporal Expressions?

"Can't wait for my <u>Halloween</u> party" (31st October)

Discrete Interval:

Distributed:

Data Collection – "<u>Christmas</u>"

- 1. Search Flickr for "<u>Christmas</u>" photos uploaded in 2012.
- 2. Extract the timestamp from the EXIF metadata.
- 3. Plot a frequency distribution from these results:

Fitting – Mathematical Model

- Consider the year as a circular quantity.
- Modulo arithmetic in the usual way.
- mean of circular quantities

(think: resolving forces in Newtonian Physics)

Fitting – Gaussian Mixture

- Gaussian Mixture Model just means the distribution is a weighted sum (or mixture) of more than one Normal Distribution.
- Include a Uniform Distribution to obviate distortion from "background noise".

Fitting – Expectation Maximization

Initialize the mixture model params: {{weight,mean,variance}}

```
DO {
    // EXPECTATION STEP (model -> data)
    foreach (Frequency in observations) {
        foreach (Model in mixture) {
             y[][] <- weight * model(observation).</pre>
         }
                                                                    http://code.google.com/p/accord/
     }
     // MAXIMIZATION STEP (data -> model)
    foreach (Model in mixture) {
        Estimate new model mean, variance & weight from
          the \gamma values for that model.
        // (Models that made little overall contribution
        // have their weight reduced accordingly.)
     }
     // CHECK FOR CONVERGENCE
     Compute new loglikelihood.
     continue = (#iterations < limit) && (\Deltaloglikelihood > threshold)
} WHILE (continue)
```

Example – "<u>Christmas</u>"

SUTime - Overview

- State-of-the-art Tempex Annotator developed at Stanford University. Part of the StanfordNLP toolkit.
 - <u>http://nlp.stanford.edu/software/corenlp.shtml</u>
- Mixture of Java code and grammar files defined in the JSON-like TokensRegex format.

SUTime - Parsing

{ Date=25, Month=12, Year=2011 }

Read more here: http://nlp.stanford.edu/software/tokensregex.shtml

Adapting the Grammar - Rules

- Define new token-level rules.
 - Many temporal expressions like "fresher's week" simply don't have a discrete-interval representation, existing definitions are augmented.

```
{ (/fresher'?s/ /week/ ) => PdfTime(FRESHERSWEEK_DIST) }
{ (/bonfire/ /night/ ) => IsoDate(NIL, 12, 31, BONFIRENIGHT_DIST) }
{ (/st.?|saint/? /valentine/ $POSS? /day/ ) => IsoDate(NIL, 2, 14, VALENTINESDAY DIST) }
```

• The parameters for the mixture models are exported:

FRESHERSWEEK_DIST = SumTimeExpression(

```
AnnualNormalDistribution (0.620141003011485,402030378.658,640202.171704994),
AnnualNormalDistribution (0.234572698142028,401109640.787,171650.789160729),
AnnualNormalDistribution (0.0505045144189651,405853428.672,663596.589699629),
AnnualNormalDistribution (0.047940522646717,382816921.807,216.8672694097),
AnnualNormalDistribution (0.0214286670877024,380634533.557,18836.7068154974),
AnnualUniformDistribution (0.0139941585850157),
AnnualNormalDistribution (0.00701558167005665,409170117.67,1830918.09260277),
AnnualNormalDistribution (0.00266863095904928,396513718.609,200066.441399321),
AnnualNormalDistribution (0.00133392369614968,392324582.8,701969.432955515)
```

)

Representation of P.D.F

- Adapt the Temporal classes to give them additional probability-density definition.
- Create classes to represent the composition of the functions:

```
AnnualUniformDistribution, AnnualNormalDistribution
SumTimeExpression, IntersectTimeExpression
```

```
public interface ITimeDensityFunction {
    public double GetDensity(DateTime time);
    public String GetGNUPlot(
        String millTimeSecondsExpr);
}
```

Adapting the Grammar

- Implement calculation for INTERSECT_OP operation
 - The p.d.f. dual of intersection is multiplication of the functions.
 - Fallback to discrete interval representation as necessary (i.e. uniform distribution over the interval).

Online Demo

The First Day of Summer: Parsing Temporal Expressions with Distributed Semantics

http://benblamey.name/

Overview of Process

"Bonfire Night"

"Fresher's Week"

"Last Day of School"

"<u>Summer</u>"

Application: Facebook Photo Creation Time

- Facebook Photos don't have EXIF.
 - We want to estimate when the photos were taken.
- We can build a prior distribution of the "photo upload delay" using the Flickr photos.
- The title of the photo might contain a temporal expression.
- We can combine our prior with the PDF yielded by parsing the temporal expressions.

Photo "Upload Delay"

"<u>Halloween</u>"

Relative Probability

Conclusions

Advantages of Distributed Definition:

- Wider scope of temporal expressions
 - Includes expressions where there isn't an "official" date e.g. "last day of school"
- It captures greater cultural richness and ambiguity arguably a more 'accurate' definition.
 - "Bonfire night", "Christmas" rich mixture of meanings.
- Motivates probability-based approaches to temporal similarity, and further calculations.
 - See the paper for a short study on computing photo upload time.
- Demonstrated techniques for data collection and fitting.

Questions?

'The First Day of Summer': Parsing Temporal Expressions with Distributed Semantics

> Ben Blamey Cardiff Metropolitan University

beblamey@cardiffmet.ac.uk <u>http://benblamey.name</u>

(Source Code, Data, More Graphs, Online Demo)

If you want help using the code – get in touch!

Twitter: @benblamey